Dipolar Poisson-Boltzmann approach to ionic solutions: a mean field and loop expansion analysis.

نویسندگان

  • Amir Levy
  • David Andelman
  • Henri Orland
چکیده

We study the variation of the dielectric response of ionic aqueous solutions as function of their ionic strength. The effect of salt on the dielectric constant appears through the coupling between ions and dipolar water molecules. On a mean-field level, we account for any internal charge distribution of particles. The dipolar degrees of freedom are added to the ionic ones and result in a generalization of the Poisson-Boltzmann (PB) equation called the Dipolar PB (DPB). By looking at the DPB equation around a fixed point-like ion, a closed-form formula for the dielectric constant is obtained. We express the dielectric constant using the "hydration length" that characterizes the hydration shell of dipoles around ions, and thus the strength of the dielectric decrement. The DPB equation is then examined for three additional cases: mixture of solvents, polarizable medium, and ions of finite size. Employing field-theoretical methods, we expand the Gibbs free-energy to first order in a loop expansion and calculate self-consistently the dielectric constant. For pure water, the dipolar fluctuations represent an important correction to the mean-field value and good agreement with the water dielectric constant is obtained. For ionic solutions we predict analytically the dielectric decrement that depends on the ionic strength in a nonlinear way. Our prediction fits rather well a large range of concentrations for different salts using only one fit parameter related to the size of ions and dipoles. A linear dependence of the dielectric constant on the salt concentration is observed at low salinity, and a noticeable deviation from linearity can be seen for ionic strength above 1 M, in agreement with experiments.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Surface Tension of Acid Solutions: Fluctuations beyond the Nonlinear Poisson-Boltzmann Theory.

We extend our previous study of surface tension of ionic solutions and apply it to acids (and salts) with strong ion-surface interactions, as described by a single adhesivity parameter for the ionic species interacting with the interface. We derive the appropriate nonlinear boundary condition with an effective surface charge due to the adsorption of ions from the bulk onto the interface. The ca...

متن کامل

An algebraic calculation method for describing time-dependent processes in electrochemistry – Expansion of existing procedures

In this paper an alternative model allowing the extension of the Debye-Hückel Theory (DHT) considering time dependence explicitly is presented. From the Electro-Quasistatic approach (EQS) introduced in earlier studies time dependent potentials are suitable to describe several phenomena especially conducting media as well as the behaviour of charged particles (ions) in electrolytes. This leads t...

متن کامل

Interfacial Solutions of the Poisson-Boltzmann Equation

The linearized Poisson-Boltzmann equation is considered for boundary conditions corresponding to a fixed point-charge ion near the planar boundary between an electrolytic solution and a dielectric substrate. Use of the Fourier expansion for this fixed charge density allows the mean potential to be synthesized in the form of a simple quadrature. Subsequently, it is possible to compute the revers...

متن کامل

Mean-field description of ionic size effects with nonuniform ionic sizes: a numerical approach.

Ionic size effects are significant in many biological systems. Mean-field descriptions of such effects can be efficient but also challenging. When ionic sizes are different, explicit formulas in such descriptions are not available for the dependence of the ionic concentrations on the electrostatic potential, that is, there is no explicit Boltzmann-type distributions. This work begins with a var...

متن کامل

Coulomb Correlation Between Counterions in the Double Layer Around Cylindrical Polyions

Monte Carlo simulation and theoretical results on some aspects of structure and thermodynamics of polyelectrolyte solutions at room temperature are presented. The solution is mimicked by an infinitely long cylindrical polyion surrounded by point counterions. Both standard histogram method and Widom’s particle insertion method are utilized in the simulations based on the cylindrical cell model. ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • The Journal of chemical physics

دوره 139 16  شماره 

صفحات  -

تاریخ انتشار 2013